Главная > Это интересно > Электрический ток в металлах

Электрический ток в металлах

Любой металл, так или иначе, является проводником – это известно из школьного курса физики. Но какие процессы протекают внутри проводника, и чем обусловлено поведение электрического тока в металлах, — именно это мы и рассмотрим в этой статье.

Что такое проводимость

Основой любого твердого химического элемента является кристаллическая решетка, состоящая из атомов вещества, вокруг которых вращаются связанные электроны. И, если решетка стабильна, то возникает вопрос: какие частицы создают электрический ток в металлах, а точнее – участвуют в его переносе? Помимо атомов вещества со связанными заряженными частичками, межатомное пространство заполнено и свободными электронами. Именно эти заряженные частицы, при воздействии на них электрического поля, начинают двигаться определенным образом, и обеспечивают тем самым, протекание тока.

Электрический ток в металле

Важно, что суммарный заряд всех свободных электронов равен суммарному заряду ионов, которые находятся в узлах решетки, но отличен по знаку (ионы – положительно заряжены, а электроны – отрицательно) – именно поэтому структура и стабильна. Если бы не было этих самых свободных заряженных частиц, то кулоновские силы разорвали бы кристаллическую решетку. Однако электроны уравновешивают действие этих сил, и вся «конструкция» остается в покое.

Чем больше таких свободных частиц присутствуют между атомами, тем сильнее проводимость материала. К примеру, медь проводит ток лучше железа именно из-за того, что в межатомном пространстве меди находится очень много свободных зарядов, способных проводить ток.

Движение тока в металлах

Электрический ток движется по проводам со скоростью, приближенной к скорости света, хотя сами свободные заряженные частицы двигаются значительно медленнее, и не покидают пределы проводника. Это означает, что ток в металлических проводниках создается электронами, которые принимают участие в переносе заряда, но не «расходуются» при этом процессе.  Таким образом, получается, что электрический ток в металлах представляет собой лишь упорядоченное движение заряженных частиц под действием поля, и не может накапливаться в проводнике.

Сопротивление проводника

Абсолютно любой элемент, каким бы проводимым он ни был, обладает сопротивлением. При воздействии электрического поля на свободные заряженные частицы, они начинают двигаться, условно говоря, от плюса к минусу. В процессе движения, электроны рассеиваются на так называемых неоднородностях решетки: дефектах, примесях и нарушениях строения. Это вызывает нагрев проводника, и характеризуется таким понятием, как сопротивление металлов.

Чем больше электронов теряется по пути от начала проводника до его конца, тем выше сопротивление данного участка проводимости. Помимо физических характеристик самого материала (удельного сопротивления, являющегося справочной величиной), из которого изготовлен проводник, на сопротивление имеют влияние форма, а также площадь сечения проводника.

Если участок проводимости однороден по составу, то его сопротивление можно узнать, применив формулу: R = p*l/S, где p — удельное сопротивление материала,  l – длинна проводника, а S – площадь сечения.

Удельное сопротивление основных материалов, используемых в электротехнике, представлено ниже, в сводной таблице электрического сопротивления металлов:

Удельное сопротивление материалов

Интересная особенность металлических проводников: при уменьшении температуры, сопротивление материала падает, а при достижении температур порядка нескольких Кельвинов – снижается практически до нуля. На этом эффекте основано явление сверхпроводимости.

Электрохимический ряд напряжений металлов

Помимо сопротивления, металлические проводники имеют такую характеристику как электрохимический потенциал. Если говорить просто, то это значение характеризует сравнительную активность вещества при протекании реакций окисления и восстановления в условиях водного раствора. Электрический ряд напряжений металлов был известен еще средневековым ученым-алхимикам, однако к современному виду его привел Алессандро Вольта в 1793 году. При конструировании своего гальванического столба, он установил соотношение активности известных ему металлов Zn, Pb, Sn, Fe, Cu, Ag, Au, которое зависит от положения элемента в этом ряду. Чем дальше находятся элементы друг от друга по списку, тем выше будет степень их взаимодействия.

Уже в 1798 году Иоганн Риттер указал на схожесть ряда Вольта с рядом окисления металлов (уменьшение их активности взаимодействия с кислородом). По его гипотезе, в результате протекания химической реакции возникает электричество. А вот его качественные показатели как раз и зависят от того, какие металлы взаимодействуют. Таким образом, был сформирован ряд напряжений, который дополнялся вновь открываемыми химическими элементами:

Электрохимический ряд напряжений

На практике электрохимический ряд напряжений металлов используется при подборе катода и анода для наиболее эффективного восстановления металла из раствора, или же наоборот – наиболее активного взаимодействия для получения электроэнергии.

Для более подробного изучения вопроса, а также понимания того, как движется электрический ток в металлах, советуем вам посмотреть это видео:

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *